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In the following we present a method based on application of the work re- 
ciprocity theorem for deriving integrodifferential and integral equations 
of equilibrium of thin elastic shells in terms of displacements. This is 
a modification of the well-known Somiglian method [5 I, from which it 
differs by a special choice of the system of the mauxiliaryn displacements; 
this choice permits of representing the displacement of a point of the 
middle-surface of the shell by the sum of two displacements: the displace- 
ment of the corresponding point of the middle plane of a plate - the “map’ 
of the middle surface of the shell - and a supplementary displacement de- 
pending in particular on the curvature of the middle surface of the shell. 
In the case of cylindrical shells the method was used by the author over 
ten years ago [ 4~1. 

In the present paper it is extended to the treatment of shells of any 
form of the middle surface. 

1. Integral Equation of Equilibrium of a Circular Arch.Con- 
sider the simplest example of application of our method to the solution 
of a one-dimensional problem. This example will permit of clarifying 

certain particular points of the method before extending it to the treat- 

ment of the two-dimensional problems of equilibrium of elastic shells. 

The example deals with the state of equilibrium of a circular arch 

under the action of a concentrated unit force P, directed along a normal 
to the arch (Fig. 1). We consider the latter as a thin rod rigidly fixed 

at its ends. 'lhe length of the undeformed rod AB will be denoted by 1. 

The position of a point of the rod will be defined by the arch coordinate 

s, measured from the point A. ‘Ihe arch coordinate of the point of sppli- 
cation of the force will be denoted by 1. lhe points of the arch will be 

related to the points of a beam A,B, of length 1, which is the "map* of 
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the arch (Fig. 2). The position of a point on the undeformed rod will be 

defined by the coordinate s, measured fran the point A,. The scale of the 
arch coordinates is the same on the curve A B and on the straight line 

Fig. 1. 

We assume that the beam is acted upon by a concentrated unit force P, 
applied at a point with the arch coordinate 5‘ and directed along the 

normal to the undeformed axis A,B, of the bemn; the ends of the latter 

are simply supported. Let us derive, by means of the work reciprocity 
theorem, the interdependence between the radial displacements u(s, q) of 

the circular arch, and the deflections y(s, 5) of the bean, assuming that 

the rigidity E I is constant in both arch and beam and that this constant 
is the same in both. Displacements tangential to the arch will be dis- 

regarded. 

Fig. 2. 

From the elementary theory of beans in bending we find 

Y (s, E) = w (2E1 - E2 - 9) 

y (s, E) = w (2sl- E2 - 9) 

(1.1.1) 

(1.1.2) 

‘lhe rotation angles of the beam at its ends are defined by 
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‘p (0 f.) = c (I -El (21 - 5) e (6 E) = - 5 (l- 5) cl+ 5) 
, 61511 ’ 6611 (1.2) 

Let us consider y(s, (1 as the radial displacement of a point of the 
circular arch. In correspondence herewith the rotation angles 0(0, [) 
and 8 (1, {) of the ends of the arch are determined by the fonmrlas X1.2); 
In the case of the arch, the displacement y(s, (> is produced by the 
action of a concentrated unit force in conjunction with that of some 
additional radially distributed load, according to the curvature of the 
arch. Ibis additional load can be determined by means of the theory of 
thin rods fran the equation of equilibrium [5 1 

=q (1.3) 

where q represents the radial load distributed along the circular arch. 

From (1.1.1) and (1.1.2) we find 

1 -a+Su-e) (s < e, 
9 (s, E) = q (s, 5) = Q (49 s) 

--&V--s) 
(1.4) 

(s > 5) 

Applying the work reciprocity theorem we consider, as the first system 
of loads on the arch, the concentrated unit force P, acting at the point 
C(~Z), the reactions R(0, ~1, R(Z, 7) and the reactive moments MO, ~1, 
M(Z, q) produced by that force (Fig. 1). lhe radial displacements, 
corresponding to the first system, are u(s, 7~). lhe second and auxiliary 
system of loads consists of the concentrated unit force applied at the 
point D(t) of th e arch corresponding to the point D(g) of the beam, the 
radially distributed load q(.s, [I determined by formula (1.31, the re- 
actions Q(0, (1, Q(Z, g> and the reactive moments L(O, (1, L(Z, 5). 'lbe 
radial displacements corresponding to the auxiliary system are ,y(s, e). 

For these systems of loads and displacements the work reciprocity 
theorem gives 

Since MO, ~1 and MZ, t)) are expressed by derivatives of the dis- 
placements u(s, 7) at the points s = 0 and s = 1, the relation (1.5) is 
an integrodifferential equation of equilibrium of the arch. 'lhe meaning 
of this equation is evident. 'lhe second term of its right-hand member 
depends, in accordance with (1.31, on the curvature of the undeformed 
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arch, while the third and fourth 

boundary conditions of the arch, 

simply supported at its ends. If 

Ki 1 ‘chcvski 

terms depend on the difference of the 

fixed at its ends, and of the beam, 
the fixity conditions of the ends of 

arch and beam are the smne, then, as is easily seen, the terms depending 

on the difference in the boundary conditions will disappear, and the re- 

lation (1.5) then becomes a Fredholm integral equation of the second kind 

with a regular kernel. 

To reduce the relation (1.5) to a Fredhom integral equation of the 

second kind, it is also possible to start from the following considera- 

tion: the displacements y(s, e), which have a singularity at the point 

D(t) produced by the action of the concentrated unit force P, can be 

amplified by arbitrary displacements y,(s, 0 continuous with respect to 

s and having derivatives with respect to s continuous up to the fourth 

order inclusive. These additional displacements correspond to the action 

of some additional loads at the ends of the arch, and of an additional 

load continuously distributed along the length of the arch. Assume the 

additional auxiliary displacements to fulfil the conditions 

Y(6, E) + Yl (0, E) = 0, Y 6 E) + ?/I v, E) = 0 (1.6.1) 

aY (0. E) + aYl(o, 5) 
as 

0 --jjy--= 1 

aY (19 5) 8YI (1. 4) 
as+Tz--= 

0 

(1.6.2) 

i.e. the new auxiliary displacements and the corresponding rotation 

angles at the ends of the arch are zero. 

To fulfil these conditions it is sufficient to assune 

Yl(S, E) = Yl(5, s) = - sy.&y%(s + E)- 2(12 + SE)] (1.7) 

The additional radial auxiliary load ql(s, 0, distributed along the 

arch and corresponding to the displacement yI(s, ~$1, in accordance with 

(1.3) is represented by the expression 

QI (s, E) == Cq[2sE - Z(s + E) + z21 (1.8) 

Cbviously ql(s, [) # ql(e, s). 

The asymmetry of the fupction ql(s, 4) reflects the properties of the 

bending moments in an arch with rigidly fixed ends. The bending moments 

tend toward zero when c+ 0, but they do not tend toward zero &en s + 0, 

because reactive moments are acting at the points A and B of the arch 
(Fig. 1). The coqlete auxiliary radial displacement of a point of the 

arch will be denoted by u(s, el: 

v(s, E) = Y (s, 5) + YlP, E) (1.9) 
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'Ihe complete additional auxiliary load will be denoted by K(s, 4‘): 

K (s, f) == Q (s, E) -t Ql (ST E) (1.10) 

Again using the work reciprocity theorem, we arrive at an integral 

equation of the Fredholm type of the second kind with asymnetrical kernel: 

1 

u 6, r0 = u(y1, Ej - 5 K (s, 5) u (s, 7,) & (1.11) 

0 

From the properties of the funct+on V(V, 6) and of the kernel K(.s, [) 

it can at once be concluded that the function ZI([, q), which satisfies 

the equation (l.ll), also fulfils the boundary conditions of the problem, 

i.e. the conditions at the rigidly 

of solution of the equation (1.11) 

and is therefore of no fundamental 

one property of integral equations 

theorem. 

fixed ends of the arch. The procedure 

does not involve any difficulties [7 1 

interest. We call attention to only 

derived from the work reciprocity 

As already stated above, the additional auxiliary displacements 

yl(s, [) must be continuous with respect to s and have derivatives con- 

tinuous with respect to s up to the fourth order inclusive. Otherwise 

these displacements are arbitrary. Taking y,(s, 5) in the form of a poly- 

nomial in terms of s not lower than of the seventh degree, we can always 

fulfil the following eight conditions: 

Under these conditions the work reciprocity theorem leads to an equa- 
tion of the form (l.ll), and this form remains the same for all fixity 

cases of the arch ends. This latter equation no longer has a unique solu- 

tion, since it must be satisfied by all forms of arch deflections accord- 

ing to the various boundary conditions. Evidently, in this case the con- 

ditions of the Fredholm third theorem, which apply to cases of non-exist- 

ence of unique solutions of non-homogeneous integral equations [7 I, must 

be fulfilled. Thus in this case we must act as follows: having transformed 

the integrodifferential equations which follow from the work reciprocity 

theorem into integral equations, it is necessary to examine the solution 

obtained with respect to fulfillment of the boundary conditions of the 

problem; if necessary, the general solution must be derived in accordance 

with the Fredholm theory. 

2. Integrodifferential Equations of Equilibrium of lhin 
Elastic Shells. 'Ihe example studied in Section 1 fundamentally reflects 
the essence of the method, the subject of the present paper, of deriving 
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integrodifferential and integral equations of equilibrium of thin elastic 

shells. The analog of the centroid line of the arch in the theory of 

shells is the middle surface of the shell, the analog of the centroid line 

of the beam is the middle surface of the plate - the “map” of the middle 

surface of the shell. Assume that the internal coordinates of the middle 

surface of the shell are isothermal coordinates [ 3 1. In this case a line 
element of the middle surface is defined by the equation 

da2 == F2 (21, 9) [(d&r’)2 -k (ds”)2] (2. i) 

where x1 and x2 are the internal coordinates of points of the middle sur- 

face of the shell, while F(x’, x2) = F(M) is a scalar function of the 
point MV, x2) of the middle surface of the shell, We assume that the 
coordinates xi are also Cartesian coordinates of the middle plane of the 

plate. 

Ibis establishes a one-to-one correspondence of the points of the 

middle surface of the shell to those of the middle plane of the plate. 

Formula (2.1) states a relation between the line element ds of the middle 

surface of the shell and the line element ds, of the middle plane of the 

plate. Ihis relation is invariant. In an arbitrary system of orthogonal 

coordinates in the middle plane of the plate we get* 

ds2 = F2 (44) dSo2 = F2 (M) Gii (~) (dam)’ (2.2.1) 

where the Gii are the components of the metric tensor in the middle plane 

of the plate. In the middle surface of the shell the components gi,(i, k= 

1, 2) of the metric tensor are 

g,, = F2 (M) G,, (M), g,, = 0 Ci J; k) (2.22) 

Assume a system of coordinate lines x3 = z in the plate and in the 

shell, coinciding with the normals to their respective middle surfaces. 
l’he vectors of the coordinate base shall be denoted by ei. ‘Ihe modulus 

1 e3 1 = 1. The components of the metric tensor gi3 are zero when i f 3, 

while g - the sheiP ~n~.p~e~rdinates (i = 1, 2, 3) arithmetize the spaces within 

Assume the thickness 2h of the shell to equal that of the plate; we 

further assume for reasons of simplification that h is a constant, although 

the method developed below can easily be generalized to include shells of 

variable thickness. Finally we assume that the elastic constants of the 
material are the smne for shell and plate. Subsequently we will use the 

Kir~~off-Eve hypothesis concerning ninvariable straight line normals” 

to the middle surface. 

l Hare and subsequently we use the summation symbol known from tensor 

analysis. 
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We turn to the derivation of the integrodifferential equations of 

equilibrium of shells. By u(a) i(N, M) let us denote the displacement of 

a point N of the middle plane of the plate in the direction of the co- 

ordinate line i produced by the action of a concentrated unit force 

applied at the point M of the middle plane and directed along the coordi- 

nate line a. We know that 

2)(,)i (N, M) = r(i)n (M, N) (2.3) 

We will consider the functions v .(fV, M) as covariant components of 

the displacement vector of the poinLZ)Af the middle surface of the shell. 

‘Ihe system of forces producing the displacements v (a) i@I M) in the shell 

consists of some applied cqncentrated force acting at a point M, an 

applied load distributed along the middle surface of the shell, and the 

reactions of the constraints. 

Fig. 3. Fig. 4. 

‘lhe concentrated force corresponding to the displacements II (a) i’“; ‘) 
in the shell will be determined by applying Hooke’s law when a = , , 
and by the equilibrium equations of the shell in terms of displacements 
when a = 3. In this way it is possible to arrive at the following con- 

clusion: a concentrated unit force applied to the middle plane of the 

plate transforms into a concentrated force acting on the middle surface 

of the shell. The vector of the transformed force is approximately de- 

termined by the contravariant components* 

ytk, = ,( F’2 (‘ii)-“’ (i = k), 

10 
g,, = css == 1 

(i f k), 
(2.4) 

The displacements v(edi in the shell are produced by the concentrated 

forces obtained above an the distributed load acting on the boundary 

l In addition to the terms indicated in (2.4) the exact expression for 

the components of the transformed force contains those of the order 

h2k ’ where ki is the principal curvature of the shell. It is known 

thai these terms can be neglected in comparison with unity [l 1. 
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surfaces of the shell. On the basis of the hypothesis of non-deformable 

normals to the middle surface the load acting on the surface of the shell 

can be replaced by a statically equivalent system of forces and moments 

acting on the middle surface of the shell. By K 

the contravariant components of the intensities o (ai the applzed loadings 

j and H( 1’ we denote 

by forces and moments corresponding to the displacements u(o) i. and 
referred to the middle surface of the shell. Further, by S(e) kJ and 

+a) ki we denote the contravariant components of the stress resultants 

and moments, acting on the boundary line of an element of the middle sur- 

face of the shell. The direction of these stress resultants and moments, 

as well as the meaning of the used notations are shown in Figs. 3 and 4. 

As everywhere, the subscript given in parentheses and not appearing 

in Figs. 3 and 4 characterizes the direction of the concentrated applied 

force which produces the auxiliary displacement. If the boundary of the 

middle surface is not represented by coordinate lines, then the stress 

resultants and moments acting along this boundary line will be denoted 

j and L(,j. - - by S(a) 
‘lhe load corresponding to the displacements u(s) i is to be determined 

as follows: 

1. If a = 1, 2, the load is determined by means of Hooke s law, which 

permits of finding the stresses on the boundary surfaces of the shell 

and then reducing them to the middle surface. In this manner it is 

possible to avoid the appearance of improper divergent integrals in the 

integrodifferential equations of equilibrium of shells [ 4c 1. Gnsider- 

able simplifications can be achieved here by application of the Kirch- 
hoff-Love hypothesis [ 8 f . 

2, If a = 3, we use the elastostatic system of equations of the theory 

of shells [ 4a - 4 cl replacing equation (1.3). In applying the work reci- 

procity theorem the system of displacements ~(~1 i(N, M) and the corres- 
ponding loading of the middle surface will be considered as a system of 

auxiliary displacements and forces. 

By u( i)a(‘, N’ we denote the covariant component of the displacement 

vector of the point M of the middle surface of the shell, this displace- 

ment being produced by the action of the applied unit force at the point 

N directed along the coordinate line i. The contravariant components of 

this unit force are given by the formulas 

fk = i = 1 ,Z), 
xk 

1 (k = 3) 

(kcf-i). (3) = 0 (k # 3) 
(2.5) 

‘lhe stress resultants and moments corresponding to the displacements 
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and acting on the boundary line of an element of the middle surface 

ailabe denoted by T(i)j and M(i)Z. The mutual position of the vectors of 

these stress resultants and moments, and the meaning of the notations, 

are illustrated in Figs. 3 and 4. 'lhe subscript in parentheses, not in- 

dicated in Figs. 3 and 4, always characterizes the direction of the con- 

centrated force producing the basic displacements. By analogy with preced- 

ing statements, we will denote by T(if and M irk stress resultants and 

moments acting on such parts of the boundary i ine of the middle surface 

of the shell as do not coincide with coordinate lines. The stress result- 

ants and moments acting along the boundary line of the middle surface are 

the reactions of the supports of the shell. .'lhe system of displacements 

'(i)a and of the forces corresponding to these displacements will be con- 

sidered as the fundanental system in applying the work reciprocity theorem. 

With all this in view, and by virtue of the theorem of the work recipro- 

city theorem as applied to the fundanental and auxiliary systems of dis- 

placements and forces, we get 

where the area integral extends over the middle surface of the shell, 

while the line integral is taken over the boundary line of the area 

mentioned. 'lhe fundamental and the auxiliary bending moments acting along 

the boundary line of the middle surface are here denoted by MI~JJ and 

L 

c idled into the fundamental and into the auxiliary stress resultants T(i)j i 

J respectively. 'Ihe terms depending on the twisting moments are in- 

and S(o)' respectively [ 5 1. 

The rotation angles at their footpoints of the normals to the middle 

surface, corresponding to the fundamental and the auxiliary systems of 

displacements, are denoted by a( i)j and $(,z)j. 

If we assune that the coordinate lines xi of the middle surface coincide 

with its curvature lines, and if we use the hypothesis of nondeformability 

of the normals, we then arrive at the formulas 

(%)I = 45 (azU(i)z - 32Uci)2) = $ (deu(i)t + k2u(i)2) (2.7.1) 
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o(i)2 = & (dgu(i)l - alu(i)2) = -4 (alu(f), + &J(i)l) (2.7.2) 

Here and subsequently we use the notations a/ax’ = d,, while the ki 
represent the principal curvatures of the middle surface of the shell. 

Since Hfa)3 J 0, a( i)7 does not appear in equation (2.6). The rotation 

sngles $(s)i are to be determined analogously to (2.7.1) and (2.7.2). 

Equations (2.6) represent the system of integrodifferential equations 

of equilibriuz corresponding to the linear theory of shells; this system 
of equations pennits of determining the components u . of Green’s tensor 

(influence function). Equations (2.6) are an an&log ~~‘~~ations (1.5). 

Integration by parts will make it possible to eliminate the derivatives 
of the displacements IL ( i) j from the integrand of the double integral. 

Taking advantage of the arbitrariness in the choice of the regular part 

of the auxiliary displacements vtcr) i, it is also possible to simplify the 
curvilinear integral and in some cases even to eliminate it [4a, cl. ‘Ihis 
transformation of equations (2.6) is analogous to reducing equation (1.5) 

to the form (1.11). The influence functions determined from equations 

(2.6) permit of finding the displacements produced by an arbitrary load- 

ing of the middle surface of the shell. 

The further development of the method indicated will be achieved by 

working out a particular concrete example. 

3. Example, Spherical Dome. Equations analogous to (2.6) have been 

applied to cases characterized by the condition 

P(M)=1 (3.1) 

Equilibrium equations of cylindrical [4-8 ] and shallow [Q 1 shells 

have been considered. Condition (3.1) finds approximate fulfilment in the 
case of shallow shells [I 1. As a very simple example we will study the 
equilibrium equations of a spherical dome of radius R. This eXample of 
the case F(H) f 1 will also permit of clarifying some general features of 

the method. 

Assume the origin of the Cartesian system of coordinates to coincide 
with one of the poles of the sphere and the axis 0~ to be a diameter of 
the sphere. Consider the plane Q to be tangent to the surface of the 
sphere at the point N(0. 0. 2R). The stereographic projection of the sur- 
face of the sphere on this plane can be given parametrically by introduc- 
ing the spherical coordinates 8, (f, on the surface of the sphere: 

x= Rsin0coscp, y= Rsinf)sincp, z=R+Reos0=2Rcos+J (3.2)‘ 

X’ =2R tan $6 co9 ‘p, y’ = 2Rtg $esincp, z0=2R (3.3) 
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where Y(x, y, Z) is a point on the sphere and M*(x*, y* t*) its stereo- 
graphic projection on the plane Q. Equations (3.2) and (3.3) show that 
the part 0 < 8 ( 8, becomes mapped on a circle of radius 2R tan1/2 8, 
in the plane Q. The auxiliary system of displacements is represented by 
the displacements of a round plate. The line elements ds and dsO on the 
surface of the sphere and on its stereographic projection are given by 
the formulas 

ds2 = R2 (de* + sin2 8 dp2) ds,2 = ,&&-$j (de2 + sin2 0 d$) (3.4) 

respectively, from which 

ds2 = co,+ $ 0 ds$ (3.5) 

Thus X* and y* are isothermal coordinates. We will not use the coordi- 
nates X* and y*, keeping the coordinates z1 = 8 and z* = 4 instead. From 
(2.2.1) and (3.5) we find 

F (M) = co.+ f 8, GI1 = c,, =R2 -O, Czz = G,, =@sinae (cos+O)-‘(3.6) 

To establish the system of the auxiliary displacements u 
(a)i 

we will 
use the known solutions of the problem of equilibrium of a round Plate 
acted upon by a concentrated force 15. 6 1. These solutions satisfy the 
conditions 

"(43 VP w = V(3)a (P, M) = 0 (a=1,2) (3.7.1) 

where P is an arbitrary point on the middle plane of the plate. Along the 
circular boundary line C in that plane the conditions 

(3.7.2) 

are fulfilled 15 I. Q is a point on the boundary line, while n is a normal 
to c. 

Now refer to the statements in Section 2 on determining the loading 
corresponding to the displacements v 

(a)i 
of the middle surface of the 

shell. To simplify equations (2.6) when a = 1, 2, we use the particular 
variation of the Kirchhoff-Love hypothesis according to which a prismatic 
element of the shell with generators normal to the middle surface of the 
latter is in the state of plane stress [ 1 I *. Then 

- 
l Another version of the Kirchhoff-Love hypothesis used to be applied 

r8.91. In the application of the hypothesis just mentioned we take 
advantage of the arbitrary character of the distribution of the auxi- 
liary displacements along the thickness of the shell [4a 1 by establish- 
ing a system of displacements Us which fulfil the conditions of the 
hypothesis rigorously. In doing so we disregard terms of the order 
h*k.* in the expressions for the components of the transformed con- 
cenirated force. 
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j ‘I,,, -T 0 (a = 1, 2; i-==l,2,Z) (3.8) 

The kernels K(3). I will be found from the elastostatic system of equa- 

tions of the shell theory in a manner analogous to that used in determin- 

ing the kernel of the equation (1.5). On the basis of the Kirchhoff-Love 

hypothesis we assume the kernels Ht7) j to be zero. Let the spherical dome 

be supported along a circle of latitude 8 = 8, with the boundary of the 

dome rigidly fixed in accordance with the conditions 

U(i)= (Q, Ai’) L= 0, +i)e (Q, W == 0 (i, a = 1, 2, 3) (3.9) 

The points M(8, $), N(t$, $1) and P(8’, $‘) are situated on the middle 

surface of the shell. The point Q(8,‘. $u’) is located on the boundary 

line of the middle surface. Equations (1.6) assume the following form: 

Here ~(o)[~] is the projection of the displacement v(o) on the direction 

of the coordinate line i. Equations (3.10.1) and (3.10.2) represent a 

system of the integrodifferential equations of equilibrium of a spherical 

dome. This system is analogous to equation (1.5). The solution of the 

system (3.10.1) and (3,lO. 2) can be reduced to the solution of one inte- 

gral equation of Fredholm type of the second kind. To this end it is 

sufficient to make use of the arbitrary choice of the regular part of the 

displacements “to) j. 

all values q5’, 

Noting that the functions u(~)~(Q, M) are regular for 

instead of the displacements u(o) j we introduce into the 

equations (3.10.1) the displacements 

(a=1,2) (3.11) 

Then we find from (3.10.1) 

utijr (M, N) == R siun-’ 0 COG $ OV(,)li) (N, Jf) (3.12) 

It is immediately clear that the functions (3.12) satisfy the boundary 

conditions (3.9). By virtue of (3.12) equation (3.10.2) assumes the form 
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where 0 i~3 is a known function. The solution of the problem of elastic 
equilibrium of a spherical dome is reduced to the solution of the integral 
equation (3.12). This solution can be obtained by means of known methods 
and need not be discussed here, 

4. Questions of Equivalence and Uniqueness. The validity of the work 
reciprocity theorem in the theory of shells and the compatibility of this 
theorem with the Kirchhoff-Love hypothesis have been rigorously proved 
[ 2 1. Therefore the accuracy of the results obtained above lies within the 
general accuracy limits of the theory of equilibrium of thin shells. In 
this sense equations (2.6) and their consequences are equivalent to the 
differential equations of equilibrium of shells based upon the Kirchhoff- 
Love hypothesis. 

The integrodifferentlal equations (2.6) have no unique solution. The 
Integral equations following from equations (2.6). e.g. equation (3.131, 
can have a unique solution, which in this case is that required. The 
possibility has, however, been emphasized (see Section 1) that the integral 
equations of equilibrium derived from the integrodlfferential equations 
may have no unique solution at all, which is in conformity with the third 
theorem of Fredholm. Therefore the integral equations obtained in the 
manner indicated must undergo an additional examination, or a method of 
solution known to secure fulfilment of the boundary conditions must be 
used. 

In conclusion we note that the above method permits of developing 
effective numerical procedures for the solution of boundary value problems 

of the theory of shells. 
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